退火、正火、淬调质 这些热处理知识必备
退火、正火、淬火、调质...这些热处理你分的清楚吗?热处理的作用就是提高材料的机械性能、消除残余应力和改善金属的切削加工性。按照热处理不同的目的,热处理工艺可分为两大类:预备热处理和最终热处理。
退火、正火、淬火、调质...这些热处理你分的清楚吗?热处理的作用就是提高材料的机械性能、消除残余应力和改善金属的切削加工性。按照热处理不同的目的,热处理工艺可分为两大类:预备热处理和最终热处理。
预备热处理的目的是改善加工性能、消除内应力和为最终热处理准备良好的金相组织。其热处理工艺有退火、正火、时效、调质等。
退火和正火用于经过热加工的毛坯。含碳量大于0.5%的碳钢和合金钢,为降低其硬度易于切削,常采用退火处理;含碳量低于0.5%的碳钢和合金钢,为避免其硬度过低切削时粘刀,而采用正火处理。退火和正火尚能细化晶粒、均匀组织,为以后的热处理作准备。退火和正火常安排在毛坯制造之后、粗加工之前进行。
为避免过多运输工作量,对于一般精度的零件,在精加工前安排一次时效处理即可。但精度要求较高的零件(如座标镗床的箱体等),应安排两次或数次时效处理工序。简单零件一般可不进行时效处理。
除铸件外,对于一些刚性较差的精密零件(如精密丝杠),为消除加工中产生的内应力,稳定零件加工精度,常在粗加工、半精加工之间安排多次时效处理。有些轴类零件加工,在校直工序后也要安排时效处理。
调质即是在淬火后进行高温回火处理,它能获得均匀细致的回火索氏体组织,为以后的表面淬火和渗氮处理时减少变形作准备,因此调质也可作为预备热处理。
由于调质后零件的综合力学性能较好,对某些硬度和耐磨性要求不高的零件,也可作为最终热处理工序。
淬火有表面淬火和整体淬火。其中表面淬火因为变形、氧化及脱碳较小而应用较广,而且表面淬火还具有外部强度高、耐磨性好,而内部保持良好的韧性、抗冲击力强的优点。为提高表面淬火零件的机械性能,常需进行调质或正火等热处理作为预备热处理。其一般工艺路线为:下料--锻造--正火(退火)--粗加工--调质--半精加工--表面淬火--精加工。
渗碳淬火适用于低碳钢和低合金钢,先提高零件表层的含碳量,经淬火后使表层获得高的硬度,而心部仍保持一定的强度和较高的韧性和塑性。渗碳分整体渗碳和局部渗碳。局部渗碳时对不渗碳部分要采取防渗措施(镀铜或镀防渗材料)。由于渗碳淬火变形大,且渗碳深度一般在0.5~2mm之间,所以渗碳工序一般安排在半精加工和精加工之间。
其工艺路线一般为:下料-锻造-正火-粗、半精加工-渗碳淬火-精加工。当局部渗碳零件的不渗碳部分采用加大余量后,切除多余的渗碳层的工艺方案时,切除多余渗碳层的工序应安排在渗碳后,淬火前进行。
渗氮是使氮原子渗入金属表面获得一层含氮化合物的处理方法。渗氮层可以提高零件表面的硬度、耐磨性、疲劳强度和抗蚀性。由于渗氮处理温度较低、变形小、且渗氮层较薄(一般不超过0.6~0.7mm),渗氮工序应尽量靠后安排,为减小渗氮时的变形,在切削后一般需进行消除应力的高温回火。
部件摆放不当这会导致部件变形,很大一部分原因是淬火剂无法以足够快的速度传走热量以获得期望的机械性能。摆放不当还可能引起热变形(因为铝的蠕变强度不够大)。正确的摆放(图1)能够避免这些问题。
加热/升温过快这会引起热变形,应当防止出现。正确地摆放部件有助于均匀地加热。
残余应力水平高于预期热处理不仅改变机械性能,而且直接影响残余应力水平。以下是一些可能的原因:淬火时(包括铸件凝固后冷却时)表面和内部的冷却速度相差较大;升温速度不合适;中间步骤发生温度变化;等等。残余应力同冷却速度的(较大)差异、部件的截面厚度、截面尺寸的突然变化和材料的强度等因素有关。一定要记住,淬火引起的应力远远大于其他工艺(包括铸造)引起的应力。
时间/温度/淬火参数出现波动它们将导致不同部件之间和不同批次之间机械和/或物理性能的偏差。原因包括部件移送时间太长、淬火不当(过慢)、加热过度、加热不足或沉淀硬化过程中时间-温度参数发生改变。比如,在时间过长和温度过高的情况下会析出较大的颗粒物(沉淀物)。
加热过度这时容易产生初熔或共晶熔化(图2)。举例来说,固溶热处理的温度接近许多铝合金的熔点(尤其是2xxx系列,往往只比它们的熔点低几度)。为了促进固态合金元素的溶解,需要适当的温度。
公司可进行各种长短轴类、齿轮类、盘类、压力容器、大型结构件等各种金属零件的正火、退火、调质、固溶处理、表面淬火等热处理加工。